Friday, December 25, 2020

Implementasi Algoritma Divide and Conquer pada Sorting dan Searching

Nama             : Aulia Rahma Salsabilla

NPM              : 19312104

Kelas              : IF 19D

Mata Kuliah   : Analisis dan Strategi Algoritma

Alamat Web Universitas    : https://teknokrat.ac.id/

Alamat Web Fakultas        : http://ftik.teknokrat.ac.id/


Implementasi Algoritma Divide and Conquer pada Sorting dan Searching


Algoritma merupakan kumpulan perintah yang memiliki daya guna yang sangat besar bagi masyarakat. Algoritma biasanya digunakan sebagai kumpulan perintah untuk menyelesaikan suatu masalah. Algoritma ini memiliki aplikasi yang bermacam-macam dalam setiap masalah yang ada. Contohnya saja adalah algoritma cara menyelesaikan suatu aritmatika yang rumit, algoritma untuk menghitung luas penampang dari suatu kabel, atau bahkan untuk menghitung bayaran parkir di setiap mal. Salah satu aplikasi bentuk pemrograman ini adalah dalam bahasa permrograman yang disebut bahasa C. Dimana bahasa C ini memiliki suatu aturan-aturan tertentu yang sangat penting sehingga dalam penggunaanya kita harus memperhatikan cara menggunakan aturan tersebut. Salah satu cara penggunaannya adalah dengan array. Dimana array ini merupakan suatu data struktur yang berkoneksi satu sama lain dengan tipe yang sama. Aplikasi array ini banyak sekali, contohnya saja adalah menghitung golongan dari umur yang berjumlah 25 tahun hingga 55 tahun. Array ini juga bisa digunakan untuk mencari suatu elemen nilai dalam suatu struktur data, selain itu array ini juga bisa digunakan untuk mengurutkan data-data yang tidak berurutan. Hal –hal yang telah disebutkan disebut sebagai searching array dan sorting array.

    Sorting array merupakan salah satu aplikasi yang paling penting dalam suatu sistem aplikasi perhitungan data. Biasanya suatu bank memiliki komputasi sorting array yang sudah biasa digunakan dalam aplikasinya sehari-hari. Bahkan telephone juga mengurutkan suatu list yang terdiri dari nama akhir , nama awal agar bisa memudahkan dalam perhitungan dalam mencari nomor telephone.

    Searching array juga memiliki tak kalah pentingnya dibandingkan dengan sorting array. Pada searcing array kita biasa menggunakannya pada data yang sangat banyak. Sehingga sangat sulit bila kita ingin mencari suatu data atau suatu angka didalamnya satu per satu. Aplikasi searching array memudahkan kita dalam mencari suatu data atau angka yang kita inginkan dengan hanya memasukkan nilai input pada suatu data yang disikan.

1. Insertion sort

Salah satu algoritma sorting yang paling sederhana adalah insertion sort. Ide dari algoritma ini dapat dianalogikan seperti mengurutkan kartu. Penjelasan berikut ini menerangkan bagaimana algoritma insertion sort bekerja dalam pengurutan kartu. Anggaplah anda ingin mengurutkan satu set kartu dari kartu yang bernilai paling kecil hingga yang paling besar. Seluruh kartu diletakkan pada meja, sebutlah meja ini sebagai meja pertama, disusun dari kiri ke kanan dan atas ke bawah. Kemudian kita mempunyai meja yang lain, meja kedua, dimana kartu yang diurutkan akan diletakkan. Ambil kartu pertama yang terletak pada pojok kiri atas meja pertama dan letakkan pada meja kedua. Ambil kartu kedua dari meja pertama, bandingkan dengan kartu yang berada pada meja kedua, kemudian letakkan pada urutan yang sesuai setelah perbandingan. Proses tersebut akan berlangsung hingga seluruh kartu pada meja pertama telah diletakkan berurutan pada meja kedua. Algoritma insertion sort pada dasarnya memilah data yang akan diurutkan menjadi dua bagian, yang belum diurutkan (meja pertama) dan yang sudah diurutkan (meja kedua). Elemen pertama diambil dari bagian array yang belum diurutkan dan kemudian diletakkan sesuai posisinya pada bagian lain dari array yang telah diurutkan. Langkah ini dilakukan secara berulang hingga tidak ada lagi elemen yang tersisa pada bagian array yang belum diurutkan.
Algoritmanya :

void insertionSort(Object array[], int startIdx, int endIdx)
{ for (int i = startIdx; i < endIdx; i++) { int k = i;
if(((Comparable) array[k]).compareTo(array[j])>0) {
for (int j = i + 1; j < endIdx; j++) { k = j; } } swap(array[i],array[k]); }
}

 2. Selection sort

Jika anda diminta untuk membuat algoritma sorting tersendiri, anda mungkin akan menemukan sebuah algoritma yang mirip dengan selection sort. Layaknya insertion
sort, algoritma ini sangat rapat dan mudah untuk diimplementasikan. Mari kita kembali menelusuri bagaimana algoritma ini berfungsi terhadap satu paket kartu. Asumsikan bahwa kartu tersebut akan diurutkan secara ascending. Pada awalnya, kartu tersebut akan disusun secara linier pada sebuah meja dari kiri ke kanan, dan dari atas ke bawah. Pilih nilai kartu yang paling rendah, kemudian tukarkan posisi kartu ini dengan kartu yang terletak pada pojok kiri atas meja. Lalu cari kartu dengan nilai paling rendah diantara sisa kartu yang tersedia. Tukarkan kartu yang baru saja terpilih dengan kartu pada posisi kedua. Ulangi langkah – langkah tersebut hingga posisi kedua sebelum posisi terakhir dibandingkan dan dapat digeser dengan kartu yang bernilai lebih rendah.

Ide utama dari algoritma selection sort adalah memilih elemen dengan nilai paling rendah dan menukar elemen yang terpilih dengan elemen ke-i. Nilai dari dimulai dari 1 ke n, dimana adalah jumlah total elemen dikurangi 1.
Algoritmanya :

void selectionSort(Object array[], int startIdx, int endIdx)
{ int min; for (int i = startIdx; i < endIdx; i++) {
if (((Comparable)array[min]).compareTo(array[j])>0) {
min = i; for (int j = i + 1; j < endIdx; j++) { min = j;
}
} } swap(array[min], array[i]);
}

3. Merge sort

Beberapa algoritma mengimplementasikan konsep rekursi untuk menyelesaikan permasalahan. Permasalahan utama kemudian dipecah menjadi sub-masalah, kemudian solusi dari sub-masalah akan membimbing menuju solusi permasalahan utama.

Pada setiap tingkatan rekursi, pola tersebut terdiri atas 3 langkah.

1. Divide

    Memilah masalah menjadi sub masalah

2. Conquer

    Selesaikan sub masalah tersebut secara rekursif. Jika sub-masalah tersebut cukup ringkas dan sederhana, pendekatan penyelesaian secara langsung akan lebih efektif

3. Kombinasi

    Mengkombinasikan solusi dari sub-masalah, yang akan membimbing menuju penyelesaian atas permasalahan utama

Seperti yang telah dijelaskan sebelumnya, Merge sort menggunakan pola divide and conquer. Dengan hal ini deskripsi dari algoritma dirumuskan dalam 3 langkahberpola divide-and-conquer. Berikut menjelaskan langkah kerja dari Merge sort.

1. Divide

    Memilah elemen – elemen dari rangkaian data menjadi dua bagian.

2. Conquer

    Conquer setiap bagian dengan memanggil prosedur merge sort secara rekursif

3. Kombinasi

    Mengkombinasikan dua bagian tersebut secara rekursif untuk mendapatkan rangkaian data berurutan

Proses rekursi berhenti jika mencapai elemen dasar. Hal ini terjadi bilamana bagian yang akan diurutkan menyisakan tepat satu elemen. Sisa pengurutan satu elemen tersebut menandakan bahwa bagian tersebut telah terurut sesuai rangkaian.
Algoritmanya :

void mergeSort(Object array[], int startIdx, int endIdx)
{ if (array.length != 1) {
mergeSort(leftArr, startIdx, midIdx);
//Membagi rangkaian data, rightArr dan leftArr
}
mergeSort(rightArr, midIdx+1, endIdx); combine(leftArr, rightArr); }

                                         Gambar3.1. Diagram Merge Sort

4. Quick sort

Quicksort ditemukan oleh C.A.R Hoare. Seperti pada merge sort, algoritma ini juga berdasar pada pola divide-and-conquer. Berbeda dengan merge sort, algoritma ini hanya mengikuti langkah – langkah sebagai berikut :

1. Divide

    Memilah rangkaian data menjadi dua sub-rangkaian A[p…q-1] dan A[q+1…r] dimana setiap elemen A[p…q-1] adalah kurang dari atau sama dengan A[q] dan setiap elemen pada A[q+1…r] adalah lebih besar atau sama dengan elemen pada A[q]. A[q] disebut sebagai elemen pivot. Perhitungan pada elemen q merupakan salah satu bagian dari prosedur pemisahan.

2. Conquer

    Mengurutkan elemen pada sub-rangkaian secara rekursif

Pada algoritma quicksort, langkah “kombinasi” tidak di lakukan karena telah terjadi pengurutan elemen – elemen pada sub-array
Algoritmanya :

void quickSort(Object array[], int leftIdx, int rightIdx) {
int pivotIdx; /* Kondisi Terminasi */
pivotIdx = partition(array, leftIdx, rightIdx);
if (rightIdx > leftIdx) { quickSort(array, leftIdx, pivotIdx-1);
}
quickSort(array, pivotIdx+1, rightIdx); }

                    Gambar 3.2. Diagram Quick Sort

5. Counting sort

Adalah sebuah algoritma sorting linear yang digunakan untuk mengurutkan ‘item’ ketika urutannya telah ditentukan dan memiliki panjang yang terbatas. Bilangan interval yang telah tetap, katakana k1 ke k2 adalah contoh dari ‘item’ tersebut. Counting sort sebenarnya merupakan metode pengurutan yang memanfaatkan index variabel array. Hanya effektif pada data yang nilainya kecil.

Algoritma ini diproses dengan mendefinisikan sebuah hubungan urutan antara ‘item’ yang akan disorting. Katakana ‘item’ yang akan disorting adalah variable A. Maka, terdapat sebuah array tambahan dengan ukuran yang serupa dengan array A. katakana array tersebut adalah array B. untuk setiap element di A, sebut e, algoritma ini menyimpan jumlah ‘item’ di A lebih kecil dari atau sama dengan e di B(e). jika hasil sorting yang terakhir disimpan di array C, maka untuk masing-masing e di A, dibuat dalam arah yang sebaliknya, yaitu C[B(e)]=e. setelah step di atas, niali dari B(e) berkurang dengan 1.

Algoritma ini membuat 2 passover A dan passover B. Jika ukuran dari range k lebih kecil dari ukuran input n, maka time complexity = O(n). perhatikan juga bahwa algoritma ini stabil yang berarti bahwa sambungan diselesaikan dengan langsung mengabarkan element-element yang muncul pertama kali.

Adapun syarat algoritma ini berjalan dengan baik ialah:

  1. Data harus bilangan bulat yang bernilai lebih besar atau sama dengan nol
  2. Range data diketahui

Ada 3 macam array yang terlibat:

  1. Array untuk mengisi bilangan yang belum diurutkan.
  2. Array untuk mengisi frekuensi bilangan itu, sekaligus sebagai penghitung kejadian.
  3. Array untuk mengisi bilangan yang sudah diurutkan.
    Algoritmanya :
countingsort(A[], B[], min, max, n)
for i = min to max do C[i] = 0
C[A[j]] = C[A[j]] + 1
for j = 1 to n do for i = min + 1 to max do
B[C[A[j]]] = A[j]
C[i] = C[i] + C[i-1] for j = n downto 1 do
C[A[j]] = C[A[j]] – 1

                                                        Gambar 3.3 Diagram Counting Sort

6. Radix Sort

Radix sorting bisa digunakan ketika masing-masing universal element bisa dilihat sebagai sebuah urutan digit (atau huruf atau symbol lainnya). Sebagai contoh, kita bisa membuat masing-masing bilangan bulat antar 0 sampai 99 sebagai sebuah urutan dengan dua digit (seperti “05”). Untuk menyorting sebuah array dari angka 2-digit, algoritma ini membuat dua ‘passing’ sorting melalui array tersebut. Pada ‘passing’ pertama, element array disorting pada least significant decimal digit. Kunci utama dari radix sort adalah pada passing yang kedua. Hasilnya, setelah kedua passing melewati array tersebut, data yang terisi telah disorting.
Algoritmanya :

source
List of bytes
source_n
number of bytes to sort
dest[256]
256 lists of bytes. each list should have enough space to hold source_n elements.
//——————-saving element in memory——————– int distribution[256] // fill the list with zeros.
for i=0 to source_n do
for i=0 to 255 do distribution[i]=0; // build a distribution history: distribution] = distribution] +1;
for i=0 to 255 do
endfor // Now we build a index-list for each possible element: int index[256]; index [0]=0;
for i = 0 to source_n do
index[i]=index[i-1]+distribution[i-1]; endfor //sorting dest: array of bytes with space for source_n bytes.
endfor
dest[index]]=source[i];
index] = index] +1;

7. Searching

7.1 Linear Searching

Algoritma pencarian secara linear adalah algoritma untuk mencari sebuah nilai pada table sambarang dengan cara melakukan pass atau transversal. Transversal dari awal sampai akhir table. Ada dua macam cara pencarian pada table. Algoritma mempunyai dua jenis metode yaitu dengan Boolean dan tanpa Boolean.
Algoritmanya :

void SeqSearch1 (int T[], int Nmax,
int value, int *idx) {
/*Algoritma*/
/*kamus lokal*/ int i; i = 1;
i = i + 1;
while ((i<Nmax) && (T[i] != value)) { } if (T[i]==value)
}
{ *idx = i; } else { *idx = 0;
}

Algoritma di atas melakukan pengulangan sampai i sama dengan Nmax (ukuran tabel) atau harga value dalam tabel sudah ditemukan.    Kemudian harga i di-assign ke dalam variable idx. Elemen terakhir diperiksa secara khusus.

void SeqSearch2 (int T[],int Nmax,
int value, int *idx) { int i;
i = 1;
boolean found; /*algoritma*/ found = false;
if (T[i] == value)
while ((i<=Nmax) && (!found)) { { found = true; } else { i = i + 1;
}
} } if (found) { *idx = i; } else { *idx = 0;

7.2 Binary Searching

Algoritma pencairan secara linear melakukan pengulangan sebanyak 1 kali untuk kasus terbaik (value sama dengan elemen pertama dalam tabel) dan Nmax kali untuk kasus terburuk. Sehingga algoritma ini mempunyai kompleksitas algoritma O(n).

Implementasi algoritma pencarian biner dalam bahasa C adalah sebagai berikut.

void BinSearch (int T[],int Nmax, int
value, int* idx) int i,j,mid;
found = false;
boolean found;$ /*algoritma*/ i = 1;
mid = (i+j) div 2;
j = Nmax; while ((!found) && (i<=j)) {

if (T[mid] == value) { found = true; } else {

if (T[mid]<value) { i = mid + 1; } else { j = mid – 1; } } }
}
if (found) { *idx = mid; } else { *idx = 0;
}

Algoritma pencarian biner adalah algoritma untuk mencari sebuah nilai pada tabel teurut dengan cara menghilangkan setengah data pada setiap langkah. Algoritma ini mencari nilai yang dicari dengan tiga langkah yaitu :

• Mencari nilai tengah dari tabel (median).
• Melakukan perbandingan nilai tengah dengan nilai yang dicari untuk menentukan apakah nilai yang dicari ada pada sebelum atau setelah nilai tengah.
• Mencari setengah sisanya dengan cara yang sama.

Tuesday, December 15, 2020

Algoritma Divide and Conquer

Nama : Aulia Rahma Salsabilla

NPM  : 19312104

Kelas  : IF 19D

Mata Kuliah : Analisis dan Strategi Algoritma


 Algoritma Divide and Conquer

 

A.  Sejarah

Algoritma divide and conquer di mana sub-masalah berukuran kira-kira setengah dari ukuran aslinya, memiliki sejarah yang panjang. Sementara deskripsi yang jelas tentang algoritma pada komputer muncul pada tahun 1946 dalam sebuah artikel oleh John Mauchly, gagasan untuk menggunakan daftar item yang disortir untuk memfasilitasi pencarian berasal dari setidaknya sejauh Babylonia pada 200 SM. Algoritma divide and conquer kuno lainnya adalah algoritma Euclidean untuk menghitung pembagi persekutuan terbesar dari dua bilangan dengan mengurangi bilangan tersebut menjadi subproblem ekuivalen yang lebih kecil dan lebih kecil, yang berasal dari beberapa abad SM.

Contoh awal dari algoritma bagi dan aklukkan dengan beberapa subproblem adalah deskripsi Gauss tahun 1805 tentang apa yang sekarang disebut algoritma Cooley-Tukey fast Fourier transform (FFT), meskipun dia tidak menganalisis jumlah operasinya secara kuantitatif, dan FFT tidak tersebar luas sampai ditemukan kembali lebih dari satu abad kemudian.

Algoritma D&C dua subproblem awal yang secara khusus dikembangkan untuk komputer dan dianalisis dengan tepat adalah algoritma pengurutan gabungan, yang ditemukan oleh John von Neumann pada tahun 1945.

Contoh penting lainnya adalah algoritma yang ditemukan oleh Anatolii A. Karatsuba pada tahun 1960 yang dapat mengalikan dua angka n- digit dalam  O operasi (dalam notasi Big O). Algoritma ini membantah dugaan tahun 1956 Andrey Kolmogorov  operasi akan diperlukan untuk tugas itu.

Sebagai contoh lain dari algoritma bagi-dan-taklukkan yang awalnya tidak melibatkan komputer, Donald Knuth memberikan metode yang biasanya digunakan kantor pos untuk merutekan surat: surat diurutkan ke dalam kantong terpisah untuk wilayah geografis yang berbeda, masing-masing kantong ini diurutkan sendiri ke dalam batch untuk sub-wilayah yang lebih kecil, dan seterusnya sampai dikirimkan. Ini terkait dengan jenis radix, dijelaskan untuk mesin sortir kartu berlubang sejak tahun 1929.


B.  Definisi

Divide and conquer adalah paradigma desain algoritma yang didasarkan pada rekursi multi-cabang. Algoritma divide-dan conquer bekerja dengan memecah masalah secara rekursif menjadi dua atau leih sub-masalah dari jenis yang sama atau terkait, hingga masalah ini menjadi cukup sederhana untuk diselesaikan secara langsung. Solusi untuk sub-masalah kemudian digabungkan untuk memberikan solusi untuk masalah aslinya.

Teknik divide and conquer ini adalah dasar dari algoritma yang efisien untuk semua jenis masalah, seperti pengurutan (misalnya, quicksort, jenis penggabungan), mengalikan angka-angka besar (misalnya algoritma Karatsuba), menemukan pasangan titik terdekat, analisis sintaksis (misalnya, parser top-down ), dan menghitung transformasi Fourier diskrit.

Memahami dan mendesain algoritma divide and conquer adalah keterampilan kompleks yang membutuhkan pemahaman yang baik tentang sifat dasar masalah yang akan dipecahkan. Seperti ketika membuktikan teorema dengan induksi, seringkali masalah asli harus diganti dengan masalah yang lebih umum atau rumit untuk menginisialisasi rekursi, dan tidak ada metode sistematis untuk menemukan generalisasi yang tepat. Komplikasi bagi-dan-taklukkan ini terlihat saat mengoptimalkan penghitungan angka Fibonacci dengan rekursi ganda yang efisien.

Kebenaran dari algoritma bagi-dan-taklukkan biasanya dibuktikan dengan induksi matematis, dan biaya komputasinya sering ditentukan dengan menyelesaikan hubungan pengulangan.

 

C.  Cara Kerja

Objek masalah yang di bagi adalah masukan (input) atau instances yang berukuran n: tabel (larik), matriks, dan sebagainya, bergantung pada masalahnya. Tiap-tiap masalah mempunyai karakteristik yang sama (the same type) dengan karakteristik masalah asal, sehingga metode Divide and Conquer lebih natural diungkapkan dalam skema rekursif. Sesuai dengan karakteristik pembagian dan pemecahan masalah tersebut, maka algoritma ini dapat berjalan baik pada persoalan yang bertipe rekursif (perulangan dengan memanggil dirinya sendiri). Dengan demikian, algoritma ini dapat diimplementasikan dengan cara iteratif (perulangan biasa), karena pada prinsipnya iteratif hampir sama dengan rekursif. Salah satu penggunaan algoritma ini yang paling populer adalah dalam hal pengolahan data yang bertipe array (elemen larik). Mengapa ? Karena pengolahan array pada umumnya selalu menggunakan prinsip rekursif atau iteratif. Penggunaan secara spesifik adalah untuk mencari nilai minimal dan maksimal serta untuk mengurutkan elemen array. Dalam hal pengurutan ini ada empat macam algoritma pengurutan yang berdasar pada algoritma Divide and Conquer, yaitu merge sort, insert sort, quick sort, dan selection sort. Merge sort dan Quick sort mempunyai kompleksitas algoritma O(n ²log n). Hal ini lebih baik jika dibandingkan dengan pengurutan biasa dengan menggunakan algoritma brute force.

Skema umum algoritma Divide And Conquer :




D. Penerpan Algoritma

1.   Pemecahan Masalah Convex Hull dengan Algoritma Divide and Conquer

Pada penyelasaian masalah pencarian Convex Hull dengan menggunakan algoritma Divide and Conquer, hal ini dapat dipandang sebagai generalisasi dari algoritma pengurutan merge sort. Berikut ini merupakan garis besar gambaran dari algoritmanya:

Pertama-tama lakukan pengurutan terhadap titik-titik dari himpunan S yang diberika berdasarkan koordinat absis-X, dengan kompleksitas waktu O(n log n).

Jika |S| ≤ 3, maka lakukan pencarian convex hull secara brute-force dengan kompleksitas waktu O(1). (Basis).

Jika tidak, partisi himpunan titik-titik pada S menjadi 2 buah himpunan A dan B, dimana A terdiri dari setengah jumlah dari |S| dan titik dengan koordinat absix-X yang terendah dan B terdiri dari setengah dari jumlah |S| dan titik dengan koordinat absis-X terbesar.

Secara rekursif lakukan penghitungan terhadap HA = conv(A) dan HB = conv(B).

Lakukan penggabungan (merge) terhadap kedua hull tersebut menjadi convex hull, H, dengan menghitung da mencari upper dan lower tangents untuk HA dan HB dengan mengabaikan semua titik yang berada diantara dua buah tangen ini.

Permasalahan convex hull adalah sebuah permasalahan yang memiliki aplikasi terapan yang cukup banyak, seperti pada permasalahan grafika komputer, otomasi desain, pengenalan pola (pattern recognition), dan penelitian operasi. Divide and Conquer adalah metode pemecahan masalah yang bekerja dengan membagi masalah menjadi beberapa upa-masalah yang lebih kecil, kemudian menyelesaikan masing-masing upa-masalah tersebut secara independent, dan akhirnya menggabungkan solusi masing-masing upa-masalah sehingga menjadi solusi dari masalah semula.

Algoritma Divide and Conquer merupakan salah satu solusi dalam penyelesaian masalah convex hull. Algoritma ini ternyata memiliki kompleksitas waktu yang cukup kecil dan efektif dalam menyelesaikan permasalahan ini (jika dibandingkan algoritma lain). Selain itu juga, algoritma ini dapat digeneralisasi untuk permasalahan convex hull yang berdimensi lebih dari 3.

2.   Persoalan Minimum dan Maksimum (MinMaks)

Persoalan : Misalnya diketahui table A yang berukuran n eleman sudah berisi nilai integer. Kita ingin menentukan nilai minimum dan nilai maksimum sekaligus di dalam table tersebut. Misalkan tabel A berisi elemen-elemen sebagai berikut :

 

Ide dasar algoritma secara Divide and Conquer :

 



Ukuran table hasil pembagian dapat dibuat cukup kecil sehingga mencari minimum dan maksimum dapat diselesaikan (SOLVE) secara lebih mudah. Dalam hal ini, ukuran kecil yang dipilih adalah 1 elemen atau 2 elemen.

Algoritma MinMaks :

a.   Untuk kasus n = 1 atau n = 2,

SOLVE : Jika n = 1, maka min = maks = An. Jika n = 2, maka bandingkan kedua elemen untuk menentukan min dan maks.

b.   Untuk kasus n > 2,

DIVIDE : Bagi dua table A secara rekursif menjadi dua bagian yang berukuran sama, yaitu bagian kiri dan bagian kanan.

CONQUER : Terapkan algoritma Divide and Conquer untuk masing-masing bagian, dalam hal ini min dan maks dari table bagian kiri dinyatakan dalam peubah min1 dan maks1, dan min dan maks dari table bagian kanan dinyatakan dalam peubah min2 dan maks2.

COMBINE : Bandingkan min1 dan min2 untuk menentukan min table A, serta bandingkan maks1 dan maks2 untuk menentukan maks table A.

3.   Optimasi Konversi Bilangan Desimal Ke Biner

Salah satu cara optimasi yang bias kita lakukan adalah membagi bilangan decimal yang hendak diubah dengan angka 8 ( bukan 2 ). Di sinilah prinsip algoritma Divide and Conquer kita gunakan untuk melakukan optimasi. Kita pecah-pecah angka decimal yang akan kita gunakan dengan cara membaginya dengan angka 8 secara berulang. Angka-angka sisa pembagian yang kita peroleh kemudian kita ubah ke dalam bilangan biner sebelum kita gabungkan menjadi hasil jawaban.

Karena angka pembagi yang kita pakai adalah 8 (23), maka kita dapat mengurangijumlah pembagian yang kita lakukan menjadi ± 1/3 dari jumlah semula. Hal ini tentu saja akan sangat berpengaruh pada kinerja dan waktu yang diperlukan oleh computer mengingat proses pembagian merupakan salah satu proses yang cukup rumit.

Tentu saja optimasi ini harus kita bayar dengan menangani konversi bilangan octal ke biner. Akan tetapi jika kita gunakan teknik perbandingan ( tanpa harus melakukan konversi secara manual ), maka proses ini akan menjadi sangat cepat dan mudah. Penerapan algoritma ini adalah dengan menggunakan sintaks case of. Begitu juga dengan permasalahan pemakaian memori ( kompleksitas ruang ) yang lebih besar yang muncul akibat penggunaan algoritma rekursif. Karena pada proses rekursif-nya kita tidak banyak menggunakan variable yang memerlukan tempat yang begitu besar, maka hal ini bias kita abaikan. Dengan penggunaan optimasi ini, maka seharusnya proses konversi akan lebih cepat karena pemangkasan jumlah pembagian yang dilakukan.

Skema procedur utama Konversi dengan optimasi :

 



Skema procedur rekursif dengan menerapkan Algoritma Divide and Conquer :

 



Kompleksitas waktu algoritma :

T(n) = O(n/3)

dengan n menyatakan eksponen terkecil dari 2 yang mempunyai nilai 2n lebuh besar dari angka decimal.

Algoritma konversi system bilangan dengan menggunakan algoritma dengan optimasi yang menerapkan algoritma Divide and Conquer lebih mangkus daripada algoritma konversi dengan metode pembagian sisa biasa jika dilihat dari segi kompleksitas waktunya. Hanya saja optimasi ini diimbangi dengan kenaikan pada kompleksitas ruangnya, meskipun pengaruhnya tidak sebesar optimasi yang kita lakukan.

4.   Mencari Pasangan Titik yang Jaraknya Terdekat (Closest Pair)

Persoalan : Diberikan himpunan titik, P, yang terdiri dari n buah titik, (xi,yi), pada bilangan 2-D. Tentukan jarak terdekat antara dua buah titik di dalam himpunan P. Jarak dua buah titik p1 = (x1, y1) dan p2 = (x2, y2) :

Penyelesaian dengan Algoritma Divide and Conquer :

a. Asumsi : n = 2k dan titik-titik diurut berdasarkan absis (x).

b. Algoritma Closest Pair :

SOLVE : jika n = 2, maka jarak kedua titik dihitung langsung dengan rumus Euclidean.

DIVIDE : Bagi titik-titik itu ke dalam dua bagian, PLeft dan PRight, setiap bagian mempunyai jumlah titik yang sama

CONQUER : Secara rekursif, terapkan algoritma D-and-C pada masingmasing bagian.

Pasangan titik yang jaraknya terdekat ada tiga kemungkinan letaknya :

Pasangan titik terdekat terdapat di bagian PLeft.

Pasangan titik terdekat terdapat di bagian PRight.

Pasangan titik terdekat dipisahkan oleh garis batas L, yaitu satu titik di PLeft dan satu titik di PRight.

Jika kasusnya adalah (c), maka lakukan tahap COMBINE untuk mendapatkan jarak dua titik terdekat sebagai solusi persoalan semula.

 

E. Keuntungan Algoritma

1.   Memecahkan masalah yang sulit

Bagilah dan taklukkan adalah alat yang ampuh untuk memecahkan masalah yang sulit secara konseptual: yang dibutuhkan hanyalah cara memecahkan masalah menjadi sub-masalah, memecahkan kasus-kasus sepele dan menggabungkan sub-masalah ke masalah asli. Demikian pula, mengurangi dan menaklukkan hanya membutuhkan pengurangan masalah menjadi satu masalah yang lebih kecil, seperti teka-teki Menara Hanoi klasik, yang mengurangi memindahkan menara dengan ketinggian n untuk memindahkan menara dengan ketinggian n - 1

2.   Efisiensi algoritma

Paradigma divide-and-conquer sering membantu dalam penemuan algoritma yang efisien. Itu adalah kunci, misalnya, untuk metode perkalian cepat Karatsuba, algoritma quicksort dan mergesort, algoritma Strassen untuk perkalian matriks, dan transformasi Fourier cepat.

Dalam semua contoh ini, pendekatan D&C mengarah pada peningkatan biaya asimtotik solusi. Misalnya, jika (a) kasus dasar memiliki ukuran batas konstan, pekerjaan pemecahan masalah dan penggabungan solusi parsial sebanding dengan ukuran masalah n dan (b) ada bilangan terbatas p dari sub-masalah dari size ~ n / p pada setiap tahap, maka biaya algoritma divide-and-conquer adalah O ( n log p n ).

3.  Paralelisme

Algoritme Divide-and-conquer secara alami diadaptasi untuk eksekusi di mesin multi-prosesor, terutama sistem memori bersama di mana komunikasi data antara prosesor tidak perlu direncanakan sebelumnya, karena sub-masalah yang berbeda dapat dijalankan pada prosesor yang berbeda.

4.  Akses memori

Algoritme bagi-dan-taklukkan secara alami cenderung memanfaatkan cache memori secara efisien. Alasannya adalah setelah sub-masalah cukup kecil, sub-masalah itu dan semua sub-masalah pada prinsipnya dapat diselesaikan di dalam cache, tanpa mengakses memori utama yang lebih lambat. Algoritme yang dirancang untuk mengeksploitasi cache dengan cara ini disebut cache-oblivious , karena tidak memuat ukuran cache sebagai parameter eksplisit. Selain itu, algoritme D&C dapat dirancang untuk algoritme penting (misalnya, pengurutan, FFT, dan perkalian matriks) menjadi algoritme yang tidak menyadari cache yang optimal - algoritme tersebut menggunakan cache dengan cara yang mungkin optimal, dalam arti asimtotik, terlepas dari ukuran cache. Sebaliknya, pendekatan tradisional untuk mengeksploitasi cache adalah memblokir , seperti dalam pengoptimalan sarang loop , di mana masalahnya secara eksplisit dibagi menjadi potongan-potongan dengan ukuran yang sesuai  ini juga dapat menggunakan cache secara optimal, tetapi hanya jika algoritme disetel untuk yang spesifik. ukuran cache dari mesin tertentu.

Keuntungan yang sama terdapat pada sistem penyimpanan hierarki lainnya, seperti NUMA atau memori virtual , serta untuk beberapa level cache: setelah sub-masalah cukup kecil, sub-masalah dapat diselesaikan dalam level hierarki tertentu, tanpa mengakses level yang lebih tinggi (lebih lambat).

5.  Roundoff kontrol

Dalam perhitungan dengan aritmatika bulat, misalnya dengan bilangan floating-point , algoritme bagi-dan-taklukkan dapat menghasilkan hasil yang lebih akurat daripada metode iteratif yang secara dangkal setara. Misalnya, seseorang dapat menambahkan nomor N baik dengan loop sederhana yang menambahkan setiap datum ke variabel tunggal, atau dengan algoritma D&C yang disebut penjumlahan berpasangan yang memecah kumpulan data menjadi dua bagian, secara rekursif menghitung jumlah setiap setengah, dan kemudian menambahkan dua jumlah. Meskipun metode kedua melakukan jumlah penambahan yang sama seperti yang pertama, dan membayar biaya tambahan dari panggilan rekursif, metode ini biasanya lebih akurat.

 

Alamat web Program Studi, Fakultas, Universitas : 

 

MATERI PELAJARAN SMK KELAS 10,11,12 DAN MATERI PERKULIAHAN Template by Ipietoon Cute Blog Design